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Abstract

In this paper, a new numerical technique, the differential quadrature element method (DQEM), has been
developed for static analysis of the two-dimensional polar Reissner—Mindlin plate in the polar coordinate
system by integrating the domain decomposition method (DDM) with the differential quadrature method
(DQM). The detailed formulations for the sectorial DQEM plate bending element and the compatibility
conditions between each element are presented. The convergence properties and the accuracy of the DQEM
for bending of thick polar plates are investigated through a number of numerical computations. Conse-
quently, the DQEM has been successfully applied to analyze several annular sector plates with discontinuous
loading and boundary conditions and cutouts to illustrate the simplicity and flexibility of this method for
solving Reissner—Mindlin plates in polar coordinate system which are not solvable directly using the
differential quadrature method. The numerical results are verified by the existing exact solutions or the FEM
solutions obtained using the software package ANSYS (Version 5.3). © 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

The differential quadrature method (DQM) is a numerical technique for solving initial and
boundary value problems. It was originated by Bellman and his associates (Bellman and Casti,
1971; Bellman et al., 1972) and further extended to multi-dimensional problems by Civan and
Sliepcevich (1984). It was first applied to structural analysis fields by Bert and his associates (Bert
et al., 1988, 1989; Striz et al., 1988). Since then, many researches have been done in both the
theoretical development and the engineering applications of the method. An excellent review paper
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contributed by Bert and Malik (1996a) has summarized a detailed literature list on both aspects
of the DQM. It has been claimed by many researchers that this numerical method has the capability
of yielding accurate solutions with minimal computational effort and therefore, has the potential
to become an alternative to the conventional numerical methods (Bert et al., 1988, 1989; Pandya
and Sherbourne, 1991; Bert and Malik, 1995; Liew et al., 1996; Bert and Malik, 1996a, b, c; Striz
et al., 1994; Chen et al., 1997a, b). Nevertheless, the further application of the DQM has been
greatly restricted by the disadvantage that it cannot be directly employed to solve the problem
with discontinuities. To overcome such drawbacks, the quadrature element method (QEM) was
developed to perform the static analysis of truss and beam and the free vibration analysis of thin
plates (Striz et al., 1994; Chen et al., 1997a). However, for all the problems analyzed in Striz et al.
(1994), a §-grid arrangement was introduced, which uses two points, separated by a small distance
0, to present each boundary point in order to satisfy the multi-boundary conditions at one point.
This is inconvenient and inaccurate for the differential equations of four or higher-order. An
improvement on the ¢-grid arrangement has been reported in their recent papers (Chen et al., 1997a,
b) by incorporating the boundary conditions into the weighting coefficient matrices. However, the
mathematical manipulations for the transformation of the weighting coefficient matrices and the
governing equation matrix are very complicated and cumbersome for the higher-order governing
equations (e.g., for sixth-order equations of thick Reissner—Mindlin plates, Reissner, 1945; Mind-
lin, 1951). Furthermore, since the QEM which was implemented for the plate problems by Chen
etal. (1997a, b) was based on the classical thin plate theory, the effects of the transverse deformation
and rotary inertia (for dynamic cases) were neglected. This results in a significant discrepancy
between the computational results and the realistic values for thick plates. Han and Liew (1996)
developed the one-dimensional differential quadrature element method (DQEM), for bending
analysis of the axisymmetric circular Reissner—Mindlin plate. The present authors have developed
the two-dimensional DQEM for static analysis of Reissner—Mindlin plate problems in a Cartesian
coordinate system (Liu and Liew, 1998). It has been shown that the DQEM integrates the attractive
advantages of both the high accuracy of the DQM and the great flexibility of the FEM for thick
plate analysis of the rectangular and the one-dimensional axisymmetric circular plates (Han and
Liew, 1996; Liu and Liew, 1998). In this paper, the two-dimensional DQEM has been further
developed for bending analysis of two-dimensional Reissner—Mindlin polar plates in the polar
coordinate system.

2. Formulations

Consider an annular sectorial Mindlin—Reissner plate with outer radius a, inner radius » and
sector angle «. The plate is divided into N, elements based on the discontinuities in the geometry,
boundary constraints and materials used. Each element consists of an isotropic material and has
uniform thickness and continuous boundary constrains on each edge.

2.1. Governing equations and constraint conditions

The equilibrium governing equations for a given element / of the sectorial Reissner—Mindlin
plate in polar coordinates are given by Kobayashi and Sonoda (1987) as follows:
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where w is the transverse deflection; y, and , are the angular rotations of the normal to the mid-
surface in radial and circumferential directions; /4, E;, G, and v, are the plate thickness, Young’s
modulus, shear modulus and Poisson’s ratio, respectively; D, is the plate flexural rigidity; and « is
the shear correction factor which is taken to be 5/6 (Reissner, 1947; Mindlin, 1951).

Substituting eqn (2) into eqn (1) yields
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The moment resultants M,, M, and M,, and the shear force resultants O, and Q, can be written
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The boundary conditions for the radial and circumferential edges of the plate are expressed in
polar coordinates as follows:

e Generalized hard simply supported edge (S):

w=0, Y,=0, M,=(M),, atr=>» (6a)
w=0, Y,=0, M,=(M>), ,,, atr=a (6b)
w=0, ¥,=0, M,=Mg"),, at0=0 (6¢)
w=0, ,=0, M,=(M§"), ., atl=u (6d)

e Generalized soft simply supported edge (S'):

w=0, M,=0, M, =(M""),, atr=5»b (7a)

w=0, M,=0, M,=(M);,,, atr=a (7b)

w=0, M,=0, M,=(M7"),, at0=0 (7c)

w=0, M,=0, My=(M¢), ,, atld=ua (7d)
e Clamped edge (C):

w=0, Y.=0, Yy,=0;, atr=b,a and 0=0,a (8a—c)
e Generalized free edge (F):

0, =0, M, =(M™),, My=0 atr=5 (9a)

0, =041, M,=(M?);. 1, My=0 atr=a (9b)

Qo =), My=M7"),, M,y=0 at0=0 (9¢)

Qo =(Q7")sps1, My=(M7)y11, My=0 atl=u (9d)

where (M), (M§),, (05, and (QF"), are the external concentrated line moments and line
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Fig. 1. Coordinate system and discretization of an annular sector plate with inner and outer radii b and a and sector
angle a: (a) coordinate system; (b) positive directions of resultant moments and shear forces in plate.

loads at the sides r = b and 0 = 0; and (M), .\, (M§"), 1, (Q7) 1,41 and (QF"),, .1 are the
external concentrated line moments and line loads at the sides r = ¢ and 0 = o.

2.2. Sectorial DQEM plate bending element

The /th element is further divided into N, x N, grid points along the radial and circumferential
directions, respectively. The element is subject to the ‘external’ concentrated line forces and
moments, which are the combination action of the real external forces and moments applied at
the four edges of element / and the shear forces and moments yielded by the adjacent elements as
shown in Fig. 2. Using the DQM rule (Liew et al., 1996), the governing eqns (3a-c) can be
discretized for each node on the inner grid of the element / as
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Fig. 2. Equilibrium and arrangement of grid points of element /.
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wherei=1,2,...,N;j=1,2,...,Np;C@and C» (n=1,2;r =1,2,3,...,N:s=1,2,3,..., Ny
are the weighting coeflicients for the nth-order partial derivatives of w, i, and y, with respect to r
and 0, respectively.

Using the same procedures, the moments and shear forces expressed by eqns (5a—e) are dis-
cretized into

N, 1 Ny
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1 Ny o N,
01, = D o+ 3 G [0 3 | (1)
(=v) (1[N oo
(Mr())ij = P Dl {I"- |: Z] Cﬁ'm) (lpr)im - (‘ﬁo)z,’:| +kZ] Ct('k)(l//())kj} (1 IC)

(Qr)ij = kG |:(lpr)ij+ 2 C:(/:)(W)kj:| (11d)
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For the grid points at the four edges of element /, the corresponding boundary conditions
described by eqns (6)—(9) or the compatibility conditions should be applied. The details of the
compatibility conditions for sectorial DQEM plate bending elements will be presented in Section
2.3.

In matrix form, eqns (10a—) can be expressed as

Ked® = f° (12)

in which K¢, d° and f* are the element weighting coefficient matrix, element displacement vector
and element force vector, respectively and
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2.3. Assembly of plate elements and compatibility conditions

In order to obtain a complete solution for the entire plate, a global system equation for all the
nodal points of the plate labelled from 1 to N should be established. This can be done by assembling
the weighting coefficient matrices, the displacement vector and the force vector of all the elements.
The final global matrix forms of the equation system for the whole plate are

Kd=F (15)

where K, d and F represent the overall weighting coefficient matrix, global displacement vector
and global force and moment vector for the entire plate, respectively and
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Fig. 3. Locations of the conjunction nodes on the interface boundaries of sectorial elements: (a) two sectorial elements
are connected in r-direction; (b) two elements are connected in 0-direction; and (c) four sectorial elements are connected
at point m.

d=[w,W),Wo) i, w2,(W,)2.(Wo)as - - . WNa(wr)Na(wO)N]T (16)

The successful solution of the problem for the plate can be achieved only if the two conditions
of (a) displacement compatibility and (b) equilibrium are satisfied at the interface boundaries of
the plate. Obviously, the displacement compatibility conditions are automatically satisfied at all
the interface conjunction nodes since the same global nodal number is used for each conjunction
node. Only the equilibrium conditions are needed to form the compatibility conditions. Hence,
according to the locations of the conjunction nodes, the compatibility conditions for the sectorial
DQEM plate bending elements in polar coordinates are built up as follows:

e For conjunction nodes at which two elements meet

Suppose elements /, and /, are two adjacent sectorial elements in polar coordinates as shown in
Fig. 3. In Fig. 3(a), the two elements are connected along the r-direction, while in Fig. 3(b),
they are connected along the 0-direction. For the first case, the compatibility conditions for the
conjunction nodes at the interface edge of elements /, and /, can be written according to the
equilibrium condition as

(Qil)N,.,j_(Qf'z)l,/ = (Q:?X[)m (173)
(Mf})zv”/ - (Mfz) 1 = (Mfm)m (17b)
(Mib)zv,,/‘ — (M%) 1j = (M), (17¢)
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Similarly, the compatibility conditions for the conjunction nodes of elements /; and /, for the
second case are

(QQ)I‘,NO_(Q?)I‘,I =(05")m (18a)
(Mé])i.N(.) - (M{f)tl = (M(e;(t)m (1 8b)
(M), — (M), = (M3, (18¢)

e For conjunction nodes at which four elements meet

As shown in Fig. 3(c), four adjacent elements /,, /,, ; and [, are arbitrarily selected from the
plate elements and all these four elements share one common node at their corners. Suppose the
globally labeled number of the common conjunction node is m, then the compatibility conditions
for the point m can be expressed as

(Q{'])N,.,N(, + (Qf‘z)Nr,l - (Q?)I,N,, - (Qi“)l,l =(07)m (19a)

(M), + (M) 50— (M), — (M) = (M), (19b)

(Mib)N,,N(; + (M%)Nr,l — (M) 1Ny — (M) =5, (19¢)
and

(Q;)])N,.,No — (ng)Nl +(0F) 1Ny~ (0%) 11 =005 (20a)

(MQ)N,,,NU - (M?')N,.,l + (Mff) 1.Ng — (Mé4) 1,1 = (M?)m)m (20b)

(M), + (M) y,0 — (M) 1, — (M) 1 = (M), (20c)

e For conjunction nodes located at the boundaries of the plate

Take the inner side boundary (r = b) of the annular sectorial plate for example, by considering
the compatibility conditions as well as the boundary conditions, the modified boundary conditions
for the conjunction node m located at this boundary can be expressed as follows

w,=0, ¥,,=0, ¥,,=0 (forclamped side—remain unchanged) (2la—)
Wy = Oa l//()m = 07 (Mfl) 1,Ny + (Miz) 1,1 = (Mfm)m (fOf hard Slmply Supported Side)

(22a—)
Wy = 0’ (M£1)1~N0+(M£2)1.1 =(M§Xl)ma (M)l”b)l,N()_i-(Mf%)l,] =(Mf«)9(t m

(for soft simply supported side) (23a—)
(Qf]) 1,Ny + (sz) 1,1 = (Q?Xt)m’ (Mil)l,NH + (Miz) 1,1 = (Msm)m
(M) v, + (M) = (M55, (for free side)  (24a—)
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3. Convergence and accuracy studies

Based on the aforementioned DQEM formulations, a program has been built up to solve the
bending problems of the thick polar plates. The notation, for instance CSFS’, denotes an annular
sector plate with edges r = b, = 0, r = a and 6 = « having clamped (C), hard simply supported
(S), free (F) and soft simply supported (S’) boundary conditions, respectively. The cosine mesh
pattern for each element has been employed for all the computations. It is expressed in the polar
coordinates as follows:

(a—b)
2

r=b+ {1—cos[(i— Dm/(N,—D]}; i=1,2,3,...,N, (252)

0_,-=%{l—cos[(j—l)n/(Ng—l)]}; i=1,2,3,...,N, (25b)

The convergence and accuracy studies are carried out first to examine the reliability of the DQEM
for the bending solution of the Reissner—Mindlin plate in polar coordinates. The convergence rate
is dependent upon the boundary conditions, relative thickness, sector angle and inner to outer
radii ratio of the plate.

3.1. Influences of boundary conditions and relative thickness

To examine the effects of boundary conditions and relative thickness on the convergence rate
and accuracy of the DQEM solutions for the polar plates, a uniformly loaded annular sector plate
with three different boundary conditions, SSSS, CSCS and FSFS are studied. The convergence
patterns for the thin (4/l, = 0.01, where [, = a—b) plates are shown in Figs 4-6. The relative
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Fig. 4. Convergence patterns of the DQEM results for central deflection, moments and shear force of a thin SSSS
annular sector plate (4/l, = 0.01,b/a = 0.5, = 30°).
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Fig. 5. Convergence patterns of the DQEM results for central deflection, moments and shear force of a thin CSCS
annular sector plate (4/l, = 0.01,b/a = 0.5, = 30°).
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Fig. 6. Convergence patterns of the DQEM results for central deflection, moments and shear force of a thin FSFS
annular sector plate (#/[, = 0.01,b/a = 0.5, 0 = 30°).

percentage errors, defined as: error = [(Value)porm — (Value)ued/(Value) e, x 100%, between the
present DQEM results and the exact solution of Kobayashi and Turvey (1994) are presented in
Tables 1-3. Furthermore, since it has been found by the present authors (Liu and Liew, 1998) that
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Table 3
Convergence of numerical results of a uniformly loaded annular sector plate having FSFS boundary conditions with
the increasing number of grid points in each element (b/a = 0.5; ¢ = 30% v = 0.3; Ny = 2 x 2)*

hll. N,xN, W. Error (%) M, Error (%) M, Error (%) Oy Error (%)
0.01 5x5 5.91218 —2.10650 1.58080 19.7032 8.30180 0.15684 —5.18753 —1465.50
7x7 5.94960 —1.48690 1.48783  12.6632 8.24520 —0.52601 —0.69079 —281.835
9%x9 5.98989 —0.81978 1.41392  7.06649 8.26223  —0.32055 0.03642 —90.4133
11x11  6.00905 —0.50253 1.37898  4.42072 8.27223  —0.19991 0.24068 —36.6465
13x13  6.01974 —0.32553 1.35915 2.91913 8.27809  —0.12921 0.31479 —17.1387
15x15  6.02638 —0.21558 1.34655 1.96502 8.28176  —0.08493 0.34658 —8.77073
17x17  6.03079 —0.14256 1.33800 1.31758 8.28419  —0.05562 0.36193 —4.73019
Exact® 6.0394 — 1.3206 — 8.2888 — 0.3799 —
0.20 5%x5 6.94667 —0.42044 1.11912  0.85511 8.33796  —0.07718 0.36591 —2.50200
7x7 6.97216 —0.05505 1.11294  0.28293 8.34246  —0.02325 0.37513  —0.04530
9%x9 6.97580 —0.00287 1.11008 0.02523 8.34424  —0.00192 0.37576 0.12257
11x11  6.97603 0.00043 1.10985 0.00451 8.34436  —0.00048 0.37580 0.13323
13x13  6.97604 0.00057 1.10984  0.00360 8.34436  —0.00048 0.37580 0.13323
15x15  6.97604 0.00057 1.10984  0.00360 8.34436  —0.00048 0.37580 0.13323
17x17  6.97604 0.00057 1.10984  0.00360 8.34436  —0.00048 0.37580 0.13323
Exact® 6.9760 — 1.1098 — 8.3444 — 0.3753 —

W =we /(1073 x qld D); Mo = M, /(1072 x l2); My = My /(1072 x ql2); Qo = QoL
®Exact solution (Kobayashi and Turvey, 1994).

the convergence rate of the DQEM is much more dominated by the grid points in each element
than by the number of the discretized elements, the effect of the grid points in each element with a
fixed number of elements is investigated here. For generality, the number of the discretized elements
is fixed at 2 x 2. It is observed that no matter what boundary conditions are considered, all the
results of the normalized deflection, moments and shear forces at the given points of the annular
sector plate, as shown in Fig. 1, converge to the corresponding exact solutions with the increasing
number of grid points in each element. It is also observed that as the grid points in each element
increase, the normalized deflection and bending moments converge rapidly, while the transverse
shear forces converge relatively slowly. Especially for the transverse shear force at the middle of
the radial edge of the FSES sector plate with the relative thickness ratio A/l. = 0.01, 15x 15 grid
points used in each element still lead to a relative error of 8.7707%. Therefore, more grid points
may be needed to furnish the converged shear forces at this point. By examining the three Tables,
it is evident that as the relative thickness //[, increases from 0.01-0.2, the convergence rate has
been improved. For example, in the case of the FSFS sector plate with b/a = 0.5 and o = 30°,
when the //[, ratio is 0.2, 9 x 9 grid points in each element are able to produce the converged results
for W., M,. and M, with the relative errors all less than 0.03%. When the ///, ratio is 0.01, 9 x 9
grid points used in each element lead to a relative error or less than 1% for W,, and M,.. But for
M, and Q,,, even though the grid points used in each element are as high as 17x 17, the
corresponding relative errors are still 1.3176 and 4.73019%, respectively. However, all these errors
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Table 4

Effect of sector angle, o, on convergence and accuracy of numerical results of a uniformly loaded annular sector plate
having CSCS boundary conditions with the increasing number of grid points in each element
(b)a=0.5;h/l.=0.01;vy =0.3; Ny =2x2)*

o N, xN, W. Error (%) M,. Error (%) M. Error (%) Ou Error (%)
30° 5x5 1.18221 —15.8690 1.60089  —38.5360 1.92557  —26.6060 0.49369 102.001
7x7 1.38673 —1.31440 2.53635 —2.62040 2.58429  —1.49830 0.24753 1.28070
9%x9 1.40465 —0.03910 2.60329  —0.05030 2.62328 —0.01220 0.23774  —2.72500
11x11 1.40569 0.03490 2.60627 0.06410 2.62483 0.04690 0.24035 —1.65710
13x13  1.40567 0.03340 2.60609 0.05720 2.62468 0.04120 0.24208  —0.94930
15x15  1.40560 0.02850 2.60581 0.04650 2.62449 0.03390 0.24314  —0.51550
Exact® 1.4052 — 2.6046 — 2.6236 — 0.2444 —
60° 5x5 2.21961 —12.1329 3.19503 —21.8303 1.01271  —42.1408 0.61927 159.870
7x7 2.50440 —0.85903 4.04342 —1.07365 1.71618  —1.94938 0.23786  —0.18464
9%9 2.52647 0.01465 4.08966 0.05774 1.75315 0.16283 0.23073  —3.17667
11x11  2.52652 0.01663 4.08812 0.02006 1.75058 0.01600 0.23417 —1.73311
13x 13 2.52643 0.013106  4.08790 0.01468 1.75039 0.00514 0.23619  —0.88544
15x15  2.52637 0.010769  4.08779 0.01199 1.75037 0.00400 0.23739  —0.38187
Exact® 2.5261 — 4.0873 — 1.7503 — 0.2383 —
90° 5%x5 2.35713 — 3.42799 — 0.58520 — 0.61704 —
Tx7 2.61072 — 4.09630 — 1.21539 — 0.23582 —
9%x9 2.64244 — 4.17752 — 1.34737 — 0.22840 —
11x11 2.64326 — 4.17675 — 1.34566 — 0.23316 —
13x13  2.64306 — 4.17585 — 1.34445 — 0.23543 —
15x15  2.64301 — 4.17579 — 1.34441 — 0.23665 —

W =we /(1072 x gl [D); Mo = M,.[(107% x qlZ); Moo = My /(1072 x g17); Qo = Qui/ql..
®Exact solution (Kobayshi and Turvey, 1994).

are below the allowable precision limits for engineering applications. Further comparing the data
between each of the three Tables, it is found that the convergence rates of the normalized deflection,
moments and shear forces are also influenced by the boundary conditions of the plate. Generally,
the SSSS sector plate has the faster convergence rate than the CSCS sector plate and the CSCS
sector plate has the faster convergence rate than the FSFS sector plate.

3.2. Influences of sector angle and inner to outer radii ratio

In order to investigate the effects of the sector angle o and the inner to outer radii ratio, b/a, on
the convergence and accuracy of the DQEM results, the uniformly loaded annular sector plate
with CSCS boundary conditions is analyzed again. The relative thickness of the plate is taken to
be 0.01. The numerical results obtained using the DQEM are shown in Tables 4 and 5. In Table
4, the effects of the sector angle o on the convergence rate and accuracy are investigated. It is found
that the convergence rate increases as the sector angle o increases from 30—60° but decreases slightly
when the sector angle increases from 60-90°. However, the overall effect of the sector angle is not
significant.
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Table 5

Effect of inner to outer radii ratio, b/a, on convergence of numerical results of a uniformly loaded annual sector plate
having CSCS boundary conditions with the increasing number of grid points in each element
(0 =60°%h/l.=0.01;v =0.3; Ny, =2x2)*

bla N,xN, W, Error (%) M, Error (%) M. Error (%) Oy Error (%)
0.10 5x5 0.76916 —16.1761 1.22067 —39.2075 1.71723  —26.6342 0.84040 263.699
7x7 0.83996 —8.46021 1.56385 —22.1163  2.05706 —12.1155  0.39902  72.6836
9%x9 0.88152 —3.93095 1.81887 —9.41567 2.21060 —5.55575 0.26281 13.7361
11x11 0.90494 —1.37861 1.94435 —3.16645 2.29565 —1.92212 0.23388 1.21608
13x13 091452 —0.33457 1.99292  —0.74754  2.32984 —0.46141 0.23028  —0.34189
15%x15 0.91759 0.00000 2.00793 0.00000 2.34064 0.00000 0.23107 0.00000
0.25 5%x5 1.31533 —19.1487 1.66854 —43.9178 1.69038  —34.0368 1.25564 414.480
Tx7 1.54941 —4.76012 2.66894 —10.2929 2.39220 —6.64986 0.34246 40.3180
9%x9 1.61370 —0.80831 2.92792  —1.58814 2.53542 —1.06103 0.24490 0.34418
I1x11  1.62542 —0.08790  2.97055 —0.15529  2.55998 —0.10263  0.24066 —1.39310
13x13 1.62687 0.00123 2.97534 0.00571 2.56274 0.00507 0.24255 —0.61870
15x 15 1.62685 0.00000 2.97517 0.00000 2.56261 0.00000 0.24406 0.00000
0.50 5x5 2.21961 —12.1329 3.19503 —21.8303 1.01271  —42.1408 0.61927 159.870
Tx7 2.50440 —0.85903 4.04342 —1.07357 1.71618  —1.94938 0.23786  —0.18464
9x9 2.52647 0.01465  4.08966 0.05774 1.75315 0.16283  0.23073  —3.17667
11x11 2.52652 0.01663 4.08812 0.02006 1.75058 0.01600 0.23417 —1.73311
13x13 2.52643 0.01306 4.08790 0.01468 1.75039 0.00514 0.23619 —0.88544
15x15  2.52637 0.01069  4.08779 0.01199 1.75037 0.00400  0.23739  —0.38187
Exact® 2.5261 — 4.0873 — 1.7503 — 0.2383 —

N W(" = w'z"/(loi3 X ql:‘/D)’ Mr(" = Mr("/(1072 X ql(z)a MU(" = MU("/(]072 X qltz)s Q_()h’ = Q()/)//qlt"
® Exact solution (Kobayshi and Turvey, 1994).

In Table 5, the effect of the inner to outer radii ratio, b/a, on the convergence rate of the DQEM
results is examined. Since no analytical solutions have been found available for cases b/a = 0.10
and 0.25 in the open literature, the converged DQEM results obtained using 15 x 15 grid points in
each element are used as the ‘accurate solution’ to define the relative error for these two cases in
this table. It is evident that the convergence rate of the DQEM results increases only slightly as
the inner to outer radii ratio, b/a, increases from 0.1-0.5. For all the cases analyzed here, however,
a reasonably accurate numerical solution can be achieved with 11 x 11 grid points in each element.

4. Numerical application examples

The DQEM is now applied to analyze several Reissner—Mindlin plate bending problems
described by the polar coordinates. The main purpose of this Section is to illustrate the applicability
and flexibility of the DQEM developed in this paper for solving various kinds of static problems
of Reissner—Mindlin plates. To ensure the accuracy of the numerical results, the grid points in
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Fig. 7. Annual sector plates subjected to a patch load on the shadowed area with different constraint conditions: (a) a
simply supported plate; (b) a fully clamped plate.

each element are set to 11 x 11 for the thick plates and 13 x 13 for the thin plates (%#//. = 0.01).
Poisson’s ratio for all cases is taken to be 0.3.

4.1. Annular sector plate subjected to a patch load

The first application example analyzed here is the annular sector plate subjected to a uniformly
distributed patch load over a sectorial area. Two boundary conditions (SSSS and CCCC) are
considered as shown in Figs 7(a) and (b). The numerical results are presented in Tables 6 and 7.
To verify the present results, some FEM solutions obtained using the commercial software package
ANSYS (Version 5.3) are also tabulated. These FEM solutions are computed using a uniform
mesh with 1825 grid points (active degree-of-freedom is 10,564). An eight-node shell 93 element
was used. It is evident from Tables 6 and 7 that the present DQEM results are in excellent
agreement with the FEM solutions. Moreover, it is observed that the sector angle « and the
dimensions of the loading area, u//. and 6,/«, have significant influences on the values of the
deflection, moments and shear forces at the given points of the plates listed in these two tables. All
the numerical results except Qy,, increase with either the sector angle o or the dimensions of the
loading area, u/l, and 0./a. The values of Oy, in both Tables, on the other hand, decrease as the
sector angle increases, but increase with the dimensions of the loading area. Furthermore, the data
in both tables indicate that the increase in relative thickness leads to the increase of the normalized
central deflection W, but with very slight influence on the normalized moments and shear forces.

4.2. Annular sector plate with mixed boundary conditions

In order to demonstrate the applicability of the DQEM to bending analysis of plates with mixed
boundary conditions in polar coordinates, an annular sector plate with simply supported circular
peripheries and mixed radial boundary conditions (partially clamped and partially simply sup-
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Table 6
Deflections, bending and twisting moments and shear forces of a simply supported annular sector plate subjected to a
uniformly distributed patch load over a sectorial area (Fig. 7(a), b/a = 0.5)*

o h/l, ull, 0o w. M, My, Mo, O, O, Ou
300 0.01 02 02 0.25361 0.61056  0.69895 —0.22618 0.01277 —0.01041  0.01823
0.5 0.5 1.23602 2.01150  2.47776 —1.25829 0.07932 —0.06915  0.10478
FEM® 0.5 0.5 1.23610 2.01817  2.28583 — — — —
0.8 0.8 2.13743 2.96054  3.80680 —2.52230 0.19892 —0.17975  0.22613
0.2 02 02 0.36845 0.61063  0.69928 —0.23202 0.01185 —0.01051  0.01825
0.5 0.5 1.62948 2.01168  2.47860 —1.29001 0.07478 —0.06992  0.10481
0.8 0.8 2.73035 2.96097  3.80838 —2.58178 0.19034 —0.18125  0.22626
60°  0.01 02 02 0.89767 1.41628  1.08914 —0.45647 0.03885 —0.02588  0.01093
0.5 0.5 4.29624 5.05340  3.31964 —2.59784 0.21098 —0.13863  0.07536
FEM® 0.5 0.5 4.29634 5.07000  3.33017 — — — —
0.8 0.8 7.32760 7.78999  4.62861 —5.31998 0.42110 —0.28425  0.22051
0.2 0.2 0.2 1.11981 1.41628  1.09113 —0.47522  0.03757 —0.02608  0.01077
0.5 0.5 5.04283 5.05089  3.33031 —2.69954 0.20507 —0.13939  0.07548
0.8 0.8 8.43947 7.78512  4.64887 —5.51087 0.41256 —0.28517  0.22083
90°  0.01 02 02 1.39893 1.98800  1.29455 —0.33857 0.05815 —0.03730  0.00546
0.5 0.5 6.23309 6.77263  3.34071 —2.23852 0.27750 —0.16950  0.04257
FEM® 0.5 0.5 6.22015 6.78500  3.35100 — — — —
0.8 0.8 10.1207 10.0757  4.21410 —5.47778 0.50047 —0.31728  0.17688
0.2 0.2 0.2 1.69232 1.98840  1.29751 —0.35557 0.05654 —0.03754  0.00479
0.5 0.5 7.14816 6.77055  3.35671 —2.34118 0.27281 —0.17013  0.04272
0.8 0.8 11.4255 10.0727  4.24280 —5.69477 0.49592 —0.31760  0.17722
CWe=wo /(1073 xglf[D); Mo =M, [/(107xql2); My = My /(107 xql2); My = M /(1072 x ql2);

00 = 0ualqls; Ore = Orelqls Qo = Qoldl..
®The finite element results computed using the commercial software package ANSYS (Version 5.3) where shell 93
element was selected with 1825 grid points (actual number of active DOF: 10,564).

ported), as shown in Fig. 8, is considered. The plate is subjected to a uniformly distributed load
over the entire plate. The results of the plate with an inner to outer radii ratio b/a = 0.5 for different
sector angles and relative thicknesses are presented in Table 8. The converged results to three
significant figures using the finite element software package ANSYS (Version 5.3) are also tabulated
in the same table. These results are computed using an eight-node shell 93 element with a uniform
mesh of 4033 grid points (active degree-of-freedom is 23,314). It is observed that the present
DQEM solution agrees very well with the FEM results. This reveals that we can apply the DQEM
confidently to the solution of polar plates with mixed boundary conditions.

4.3. A fully clamped annular sector plate with a free sectorial cutout

As shown in Fig. 9, a fully clamped and uniformly loaded annular sector plate with a sectorial
free cutout is analyzed. The results of the deflections at three selected points, ¢, b’, ¢’ and the
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Table 7
Deflections, bending moments and shear forces of a fully clamped annular sector plate subjected to a uniformly
distributed patch load over a sectorial area (Fig. 7(b), b/a = 0.5)*

o hil. ufl, 0./ W. M, My, O O Oy
30° 0.01 0.2 0.2 0.11366 0.44937 0.51822 0.01950 —0.01702 0.03343
0.5 0.5 0.47336 1.15448 1.48451 0.12033 —0.10745  0.16771
FEM® 0.5 0.5 0.47326 1.16030 1.49248 — — —
0.8 0.8 0.68047 1.38121 1.88991 0.27828 —0.24297  0.30603
0.2 0.2 0.2 0.23404 0.46936 0.51618 0.01007 —0.01279  0.02431
0.5 0.5 0.89419 1.24642 1.47829 0.06698 —0.08481 0.13232
FEM® 0.5 0.5 0.89418 1.25273 1.48627 — — —
0.8 0.8 1.31599 1.50964 1.88930 0.18024 —0.21075  0.26442
60° 0.1 0.2 0.2 0.38971 1.02301 0.78751 0.07270 —0.04492 0.01362
0.5 0.5 1.56833 2.91010 1.78885 0.33285 —0.20000  0.10383
FEM® 0.5 0.5 1.56817 2.92600 1.79700 — — —
0.8 0.8 2.2106 3.69554 1.97819 0.55078 —0.35163 0.29780
0.2 0.2 0.2 0.62879 1.01848 0.82553 0.05070 —0.03836  0.00985
0.5 0.5 2.39221 2.89583 1.94921 0.25756 —0.18687  0.00790
FEM® 0.5 0.5 2.39223 291153 1.95833 — — —
0.8 0.8 3.43031 3.69228 2.17645 0.47114 —0.34296  0.24283
90° 0.01 0.2 0.2 0.55813 1.34477 0.87541 0.10047 —0.06057 0.00202
0.5 0.5 1.95880 3.43880 1.50543 0.35944 —0.21345  0.03857
FEM® 0.5 0.5 1.95897 3.45800 1.50927 — — —
0.8 0.8 2.56970 4.11462 1.45818 0.5374 —0.35333 0.22746
0.2 0.2 0.2 0.87941 1.34213 0.92967 0.07531 —0.05391 0.00073
0.5 0.5 2.97451 3.44531 1.66583 0.32252 —0.21156  0.02689
FEM® 0.5 0.5 2.97451 3.46400 1.67067 — — —
0.8 0.8 3.97362 4.13401 1.59005 0.52354 —0.35519  0.17980

* W(" = w’t"/(loi3 X ql?/D)a Mr(" = MI‘("/(1072 X qltl)v M()z" = MO(‘//(1072 X qltz)a Qrd’ = Qra”/ql('; Qr'(” = Qr("/ql(';
OQor = Qov/ql,

®The finite element results computed using the commercial software package ANSYS (Version 5.3) where shell 93
element was selected with 1825 grid points (actual number of active DOF: 10,564).

moments and shear forces at the other three points, ¢, ¢’, f, are computed and displayed in Table
9. Three sector angles, o = 30, 60 and 90°, are considered. The computations were carried out for
both thin (4/l, = 0.01) and thick (#/[. = 0.2) plates. The DQEM results are compared with those
obtained using the finite element software package ANSYS (Version 5.3). Again, the shell 93
element with an even mesh (total grid points used: 2824; active DOF: 15,408) was chosen for
computations. The comparison shows that both solutions are in good agreement.

5. Conclusion

In this paper, the two-dimensional differential quadrature element method has been developed
for the bending analysis of Reissner—Mindlin plates in the polar coordinate system by integrating
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Fig. 8. A uniformly loaded annular sector plate having simply supported circular edges and mixed boundary conditions
(CSC) on the radial edges.

Table 8
Deflections, bending moments and shear forces of a uniformly loaded annular sector plate with mixed boundary
conditions (Fig. 8,b/a = 0.5;u/l, = 1/3; Ny = 3 x 1)*

o h/l. Solutions w. M,. M, M. O 0.
30° 0.01 DQEM 1.24083 1.98726 2.64323 0.00000 0.15477 —0.21844
FEM"® 1.21562 1.94933 2.62133 0.00000 — —
0.20 DQEM 2.16730 2.33028 3.02051 0.00000 0.18575 —0.23398
FEM" 2.14945 2.30180 2.98873 0.00000 — —
60° 0.01 DQEM 6.22027 6.80788 4.57863 0.00000 0.45347 —0.35836
FEM" 6.14121 6.70567 4.55967 0.04039 — —
0.20 DQEM 7.90020 7.30139 4.56674 0.00000 0.46312 —0.36330
FEM® 7.85817 7.52600 4.58847 0.00006 — —
90° 0.01 DQEM 10.0525 10.0758 4.46367 0.00000 0.59997 —0.41124
FEM® 9.99020 9.98250 4.47083 0.00000 — —
0.20 DQEM 11.6782 10.2676 4.40273 0.00000 0.59297 —0.41029
FEM"® 11.6459 10.2307 4.43353 0.00000 — —

_a VI/( = M}(‘//(1973 X ql?/D); Mr(" = Mr("/(1072 X ql(z)a M{)(“ = M()("/(1072 X qlzz)t Mr'l)(‘ = Mr(h"/(l()72 X ql(z)a
in’ = Qm’/‘]lﬁ-; Qre’ = Q'é/qlt

®The finite element results computed using the commercial software package ANSYS (Version 5.3) where shell 93
element was selected with 4033 grid points (actual number of active DOF: 23,314).

the domain decomposition method with the DQ method. The detailed formulations for the sectorial
DQEM Reissner—Mindlin plate bending element, and the compatibility conditions between adjac-
ent elements have been derived in polar coordinates.
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Fig. 9. A fully clamped and uniformly loaded annular sector plate with an inner free sectorial cutout.

Table 9
Deflections, bending moments and shear forces of a fully clamped and uniformly loaded annular sector plate having a
sectorial cutout (Fig. 9,u/l, = 0,/a = 0.5;b/a = 0.5;v = 0.3; Ny = 3 x 3)*

o h/lL W(’ Wh’ Wc’ Mre’ Mr_‘/ M(/z/’ er’ Qr/'

30° 0.01 0.22224  0.19743  0.32810  —1.94329 —2.36111 —2.08510  0.27158 —0.26638
FEM® 0.22195 0.19707 0.33222  —2.20333 —2.37700 —2.04950 — —
0.20 0.52835 0.42540 0.67198 —1.78844 —2.24862 —1.91542  0.21054 —0.22519
FEM® 0.52593 0.42750 0.68916 —1.73873 —2.38073 —1.98107 — —

60° 0.01 0.62075 1.10709  0.53013 —4.13854 —3.15798 —4.38428  0.31535 —0.24757
FEM"® 0.62029 1.10487 0.52549  —4.18833 —3.07317 —4.39583 — —
0.20 1.03988 1.92673 0.87173  —3.97269 —3.11610 —3.86942  0.31342 —0.24309
FEM® 1.03584 1.92395 0.84945 —4.00393 —3.05280 —3.87607 — —

90° 0.01 0.62257  1.82579  0.50870  —3.99062 —3.03478 —5.29256  0.26819 —0.23920
0.20 1.02633  3.10989  0.83393  —4.10449 —3.00865 —4.35417  0.30017 —0.23480

Wy =we /(1077 x gl/D); Wy = wy /(107 x ql?/D); We=w. /(1077 xql}/D); M., =M, [(107%xql?);
MOtl’ = M{)tl'/(1072 X qlf), Mr = Mr/"/(1072 X qlf)’ Qre' = Qr(”/qlc; Qr/ = Qr/’/ql("

"The finite element results computed using the commercial software package ANSYS (Version 5.3) where shell 93
element was selected with 2824 grid points (actual number of active DOF: 15,408)

The convergence properties and accuracy of the DQEM for solving the bending of the Reissner—
Mindlin polar plates have been investigated through a number of numerical studies. It was found
that the convergence rate of the DQEM in the polar coordinate system is dependent mainly upon
the boundary conditions and plate relative thickness. The effects of the sector angle and inner to
outer radii ratio on the convergence rate are not significant. However, for all the cases analyzed
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here, an accurate solution was achieved with 11 x 11 grid points in each element for a thicker plate
(h/l, = 0.1) and 13 x 13 grid points in each element for a thin plate (4//, = 0.01).

Consequently, this new method has been successfully applied to the analysis of several annular
sector plates with discontinuities in loading, geometry and boundary conditions. The validity of
the DQEM has been further established by comparing the DQEM results for these example plate
problems with the FE solutions obtained using the commercial FEM software ANSYS (Version
5.3). It is found that the DQEM integrates both the advantages of DQM and the flexibility of the
FEM for thick polar plate analysis and therefore, has greatly enhanced the application scopes of
the DQM.
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